module.exports = Quaternion;
var Vec3 = require('./Vec3');
/**
* A Quaternion describes a rotation in 3D space. The Quaternion is mathematically defined as Q = x*i + y*j + z*k + w, where (i,j,k) are imaginary basis vectors. (x,y,z) can be seen as a vector related to the axis of rotation, while the real multiplier, w, is related to the amount of rotation.
* @class Quaternion
* @constructor
* @param {Number} x Multiplier of the imaginary basis vector i.
* @param {Number} y Multiplier of the imaginary basis vector j.
* @param {Number} z Multiplier of the imaginary basis vector k.
* @param {Number} w Multiplier of the real part.
* @see http://en.wikipedia.org/wiki/Quaternion
*/
function Quaternion(x,y,z,w){
/**
* @property {Number} x
*/
this.x = x!==undefined ? x : 0;
/**
* @property {Number} y
*/
this.y = y!==undefined ? y : 0;
/**
* @property {Number} z
*/
this.z = z!==undefined ? z : 0;
/**
* The multiplier of the real quaternion basis vector.
* @property {Number} w
*/
this.w = w!==undefined ? w : 1;
}
/**
* Set the value of the quaternion.
* @method set
* @param {Number} x
* @param {Number} y
* @param {Number} z
* @param {Number} w
*/
Quaternion.prototype.set = function(x,y,z,w){
this.x = x;
this.y = y;
this.z = z;
this.w = w;
};
/**
* Convert to a readable format
* @method toString
* @return string
*/
Quaternion.prototype.toString = function(){
return this.x+","+this.y+","+this.z+","+this.w;
};
/**
* Convert to an Array
* @method toArray
* @return Array
*/
Quaternion.prototype.toArray = function(){
return [this.x, this.y, this.z, this.w];
};
/**
* Set the quaternion components given an axis and an angle.
* @method setFromAxisAngle
* @param {Vec3} axis
* @param {Number} angle in radians
*/
Quaternion.prototype.setFromAxisAngle = function(axis,angle){
var s = Math.sin(angle*0.5);
this.x = axis.x * s;
this.y = axis.y * s;
this.z = axis.z * s;
this.w = Math.cos(angle*0.5);
};
/**
* Converts the quaternion to axis/angle representation.
* @method toAxisAngle
* @param {Vec3} targetAxis Optional. A vector object to reuse for storing the axis.
* @return Array An array, first elemnt is the axis and the second is the angle in radians.
*/
Quaternion.prototype.toAxisAngle = function(targetAxis){
targetAxis = targetAxis || new Vec3();
this.normalize(); // if w>1 acos and sqrt will produce errors, this cant happen if quaternion is normalised
var angle = 2 * Math.acos(this.w);
var s = Math.sqrt(1-this.w*this.w); // assuming quaternion normalised then w is less than 1, so term always positive.
if (s < 0.001) { // test to avoid divide by zero, s is always positive due to sqrt
// if s close to zero then direction of axis not important
targetAxis.x = this.x; // if it is important that axis is normalised then replace with x=1; y=z=0;
targetAxis.y = this.y;
targetAxis.z = this.z;
} else {
targetAxis.x = this.x / s; // normalise axis
targetAxis.y = this.y / s;
targetAxis.z = this.z / s;
}
return [targetAxis,angle];
};
var sfv_t1 = new Vec3(),
sfv_t2 = new Vec3();
/**
* Set the quaternion value given two vectors. The resulting rotation will be the needed rotation to rotate u to v.
* @method setFromVectors
* @param {Vec3} u
* @param {Vec3} v
*/
Quaternion.prototype.setFromVectors = function(u,v){
if(u.isAntiparallelTo(v)){
var t1 = sfv_t1;
var t2 = sfv_t2;
u.tangents(t1,t2);
this.setFromAxisAngle(t1,Math.PI);
} else {
var a = u.cross(v);
this.x = a.x;
this.y = a.y;
this.z = a.z;
this.w = Math.sqrt(Math.pow(u.norm(),2) * Math.pow(v.norm(),2)) + u.dot(v);
this.normalize();
}
};
/**
* Quaternion multiplication
* @method mult
* @param {Quaternion} q
* @param {Quaternion} target Optional.
* @return {Quaternion}
*/
var Quaternion_mult_va = new Vec3();
var Quaternion_mult_vb = new Vec3();
var Quaternion_mult_vaxvb = new Vec3();
Quaternion.prototype.mult = function(q,target){
target = target || new Quaternion();
var w = this.w,
va = Quaternion_mult_va,
vb = Quaternion_mult_vb,
vaxvb = Quaternion_mult_vaxvb;
va.set(this.x,this.y,this.z);
vb.set(q.x,q.y,q.z);
target.w = w*q.w - va.dot(vb);
va.cross(vb,vaxvb);
target.x = w * vb.x + q.w*va.x + vaxvb.x;
target.y = w * vb.y + q.w*va.y + vaxvb.y;
target.z = w * vb.z + q.w*va.z + vaxvb.z;
return target;
};
/**
* Get the inverse quaternion rotation.
* @method inverse
* @param {Quaternion} target
* @return {Quaternion}
*/
Quaternion.prototype.inverse = function(target){
var x = this.x, y = this.y, z = this.z, w = this.w;
target = target || new Quaternion();
this.conjugate(target);
var inorm2 = 1/(x*x + y*y + z*z + w*w);
target.x *= inorm2;
target.y *= inorm2;
target.z *= inorm2;
target.w *= inorm2;
return target;
};
/**
* Get the quaternion conjugate
* @method conjugate
* @param {Quaternion} target
* @return {Quaternion}
*/
Quaternion.prototype.conjugate = function(target){
target = target || new Quaternion();
target.x = -this.x;
target.y = -this.y;
target.z = -this.z;
target.w = this.w;
return target;
};
/**
* Normalize the quaternion. Note that this changes the values of the quaternion.
* @method normalize
*/
Quaternion.prototype.normalize = function(){
var l = Math.sqrt(this.x*this.x+this.y*this.y+this.z*this.z+this.w*this.w);
if ( l === 0 ) {
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 0;
} else {
l = 1 / l;
this.x *= l;
this.y *= l;
this.z *= l;
this.w *= l;
}
};
/**
* Approximation of quaternion normalization. Works best when quat is already almost-normalized.
* @method normalizeFast
* @see http://jsperf.com/fast-quaternion-normalization
* @author unphased, https://github.com/unphased
*/
Quaternion.prototype.normalizeFast = function () {
var f = (3.0-(this.x*this.x+this.y*this.y+this.z*this.z+this.w*this.w))/2.0;
if ( f === 0 ) {
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 0;
} else {
this.x *= f;
this.y *= f;
this.z *= f;
this.w *= f;
}
};
/**
* Multiply the quaternion by a vector
* @method vmult
* @param {Vec3} v
* @param {Vec3} target Optional
* @return {Vec3}
*/
Quaternion.prototype.vmult = function(v,target){
target = target || new Vec3();
var x = v.x,
y = v.y,
z = v.z;
var qx = this.x,
qy = this.y,
qz = this.z,
qw = this.w;
// q*v
var ix = qw * x + qy * z - qz * y,
iy = qw * y + qz * x - qx * z,
iz = qw * z + qx * y - qy * x,
iw = -qx * x - qy * y - qz * z;
target.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
target.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
target.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
return target;
};
/**
* Copies value of source to this quaternion.
* @method copy
* @param {Quaternion} source
* @return {Quaternion} this
*/
Quaternion.prototype.copy = function(source){
this.x = source.x;
this.y = source.y;
this.z = source.z;
this.w = source.w;
return this;
};
/**
* Convert the quaternion to euler angle representation. Order: YZX, as this page describes: http://www.euclideanspace.com/maths/standards/index.htm
* @method toEuler
* @param {Vec3} target
* @param string order Three-character string e.g. "YZX", which also is default.
*/
Quaternion.prototype.toEuler = function(target,order){
order = order || "YZX";
var heading, attitude, bank;
var x = this.x, y = this.y, z = this.z, w = this.w;
switch(order){
case "YZX":
var test = x*y + z*w;
if (test > 0.499) { // singularity at north pole
heading = 2 * Math.atan2(x,w);
attitude = Math.PI/2;
bank = 0;
}
if (test < -0.499) { // singularity at south pole
heading = -2 * Math.atan2(x,w);
attitude = - Math.PI/2;
bank = 0;
}
if(isNaN(heading)){
var sqx = x*x;
var sqy = y*y;
var sqz = z*z;
heading = Math.atan2(2*y*w - 2*x*z , 1 - 2*sqy - 2*sqz); // Heading
attitude = Math.asin(2*test); // attitude
bank = Math.atan2(2*x*w - 2*y*z , 1 - 2*sqx - 2*sqz); // bank
}
break;
default:
throw new Error("Euler order "+order+" not supported yet.");
}
target.y = heading;
target.z = attitude;
target.x = bank;
};
/**
* See http://www.mathworks.com/matlabcentral/fileexchange/20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/content/SpinCalc.m
* @method setFromEuler
* @param {Number} x
* @param {Number} y
* @param {Number} z
* @param {String} order The order to apply angles: 'XYZ' or 'YXZ' or any other combination
*/
Quaternion.prototype.setFromEuler = function ( x, y, z, order ) {
order = order || "XYZ";
var c1 = Math.cos( x / 2 );
var c2 = Math.cos( y / 2 );
var c3 = Math.cos( z / 2 );
var s1 = Math.sin( x / 2 );
var s2 = Math.sin( y / 2 );
var s3 = Math.sin( z / 2 );
if ( order === 'XYZ' ) {
this.x = s1 * c2 * c3 + c1 * s2 * s3;
this.y = c1 * s2 * c3 - s1 * c2 * s3;
this.z = c1 * c2 * s3 + s1 * s2 * c3;
this.w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'YXZ' ) {
this.x = s1 * c2 * c3 + c1 * s2 * s3;
this.y = c1 * s2 * c3 - s1 * c2 * s3;
this.z = c1 * c2 * s3 - s1 * s2 * c3;
this.w = c1 * c2 * c3 + s1 * s2 * s3;
} else if ( order === 'ZXY' ) {
this.x = s1 * c2 * c3 - c1 * s2 * s3;
this.y = c1 * s2 * c3 + s1 * c2 * s3;
this.z = c1 * c2 * s3 + s1 * s2 * c3;
this.w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'ZYX' ) {
this.x = s1 * c2 * c3 - c1 * s2 * s3;
this.y = c1 * s2 * c3 + s1 * c2 * s3;
this.z = c1 * c2 * s3 - s1 * s2 * c3;
this.w = c1 * c2 * c3 + s1 * s2 * s3;
} else if ( order === 'YZX' ) {
this.x = s1 * c2 * c3 + c1 * s2 * s3;
this.y = c1 * s2 * c3 + s1 * c2 * s3;
this.z = c1 * c2 * s3 - s1 * s2 * c3;
this.w = c1 * c2 * c3 - s1 * s2 * s3;
} else if ( order === 'XZY' ) {
this.x = s1 * c2 * c3 - c1 * s2 * s3;
this.y = c1 * s2 * c3 - s1 * c2 * s3;
this.z = c1 * c2 * s3 + s1 * s2 * c3;
this.w = c1 * c2 * c3 + s1 * s2 * s3;
}
return this;
};
Quaternion.prototype.clone = function(){
return new Quaternion(this.x, this.y, this.z, this.w);
};