API Docs for: 0.6.1
Show:

File: src/math/Mat3.js

module.exports = Mat3;

var Vec3 = require('./Vec3');

/**
 * A 3x3 matrix.
 * @class Mat3
 * @constructor
 * @param array elements Array of nine elements. Optional.
 * @author schteppe / http://github.com/schteppe
 */
function Mat3(elements){
    /**
     * A vector of length 9, containing all matrix elements
     * @property {Array} elements
     */
    if(elements){
        this.elements = elements;
    } else {
        this.elements = [0,0,0,0,0,0,0,0,0];
    }
}

/**
 * Sets the matrix to identity
 * @method identity
 * @todo Should perhaps be renamed to setIdentity() to be more clear.
 * @todo Create another function that immediately creates an identity matrix eg. eye()
 */
Mat3.prototype.identity = function(){
    var e = this.elements;
    e[0] = 1;
    e[1] = 0;
    e[2] = 0;

    e[3] = 0;
    e[4] = 1;
    e[5] = 0;

    e[6] = 0;
    e[7] = 0;
    e[8] = 1;
};

/**
 * Set all elements to zero
 * @method setZero
 */
Mat3.prototype.setZero = function(){
    var e = this.elements;
    e[0] = 0;
    e[1] = 0;
    e[2] = 0;
    e[3] = 0;
    e[4] = 0;
    e[5] = 0;
    e[6] = 0;
    e[7] = 0;
    e[8] = 0;
};

/**
 * Sets the matrix diagonal elements from a Vec3
 * @method setTrace
 * @param {Vec3} vec3
 */
Mat3.prototype.setTrace = function(vec3){
    var e = this.elements;
    e[0] = vec3.x;
    e[4] = vec3.y;
    e[8] = vec3.z;
};

/**
 * Gets the matrix diagonal elements
 * @method getTrace
 * @return {Vec3}
 */
Mat3.prototype.getTrace = function(target){
    var target = target || new Vec3();
    var e = this.elements;
    target.x = e[0];
    target.y = e[4];
    target.z = e[8];
};

/**
 * Matrix-Vector multiplication
 * @method vmult
 * @param {Vec3} v The vector to multiply with
 * @param {Vec3} target Optional, target to save the result in.
 */
Mat3.prototype.vmult = function(v,target){
    target = target || new Vec3();

    var e = this.elements,
        x = v.x,
        y = v.y,
        z = v.z;
    target.x = e[0]*x + e[1]*y + e[2]*z;
    target.y = e[3]*x + e[4]*y + e[5]*z;
    target.z = e[6]*x + e[7]*y + e[8]*z;

    return target;
};

/**
 * Matrix-scalar multiplication
 * @method smult
 * @param {Number} s
 */
Mat3.prototype.smult = function(s){
    for(var i=0; i<this.elements.length; i++){
        this.elements[i] *= s;
    }
};

/**
 * Matrix multiplication
 * @method mmult
 * @param {Mat3} m Matrix to multiply with from left side.
 * @return {Mat3} The result.
 */
Mat3.prototype.mmult = function(m,target){
    var r = target || new Mat3();
    for(var i=0; i<3; i++){
        for(var j=0; j<3; j++){
            var sum = 0.0;
            for(var k=0; k<3; k++){
                sum += m.elements[i+k*3] * this.elements[k+j*3];
            }
            r.elements[i+j*3] = sum;
        }
    }
    return r;
};

/**
 * Scale each column of the matrix
 * @method scale
 * @param {Vec3} v
 * @return {Mat3} The result.
 */
Mat3.prototype.scale = function(v,target){
    target = target || new Mat3();
    var e = this.elements,
        t = target.elements;
    for(var i=0; i!==3; i++){
        t[3*i + 0] = v.x * e[3*i + 0];
        t[3*i + 1] = v.y * e[3*i + 1];
        t[3*i + 2] = v.z * e[3*i + 2];
    }
    return target;
};

/**
 * Solve Ax=b
 * @method solve
 * @param {Vec3} b The right hand side
 * @param {Vec3} target Optional. Target vector to save in.
 * @return {Vec3} The solution x
 * @todo should reuse arrays
 */
Mat3.prototype.solve = function(b,target){
    target = target || new Vec3();

    // Construct equations
    var nr = 3; // num rows
    var nc = 4; // num cols
    var eqns = [];
    for(var i=0; i<nr*nc; i++){
        eqns.push(0);
    }
    var i,j;
    for(i=0; i<3; i++){
        for(j=0; j<3; j++){
            eqns[i+nc*j] = this.elements[i+3*j];
        }
    }
    eqns[3+4*0] = b.x;
    eqns[3+4*1] = b.y;
    eqns[3+4*2] = b.z;

    // Compute right upper triangular version of the matrix - Gauss elimination
    var n = 3, k = n, np;
    var kp = 4; // num rows
    var p, els;
    do {
        i = k - n;
        if (eqns[i+nc*i] === 0) {
            // the pivot is null, swap lines
            for (j = i + 1; j < k; j++) {
                if (eqns[i+nc*j] !== 0) {
                    np = kp;
                    do {  // do ligne( i ) = ligne( i ) + ligne( k )
                        p = kp - np;
                        eqns[p+nc*i] += eqns[p+nc*j];
                    } while (--np);
                    break;
                }
            }
        }
        if (eqns[i+nc*i] !== 0) {
            for (j = i + 1; j < k; j++) {
                var multiplier = eqns[i+nc*j] / eqns[i+nc*i];
                np = kp;
                do {  // do ligne( k ) = ligne( k ) - multiplier * ligne( i )
                    p = kp - np;
                    eqns[p+nc*j] = p <= i ? 0 : eqns[p+nc*j] - eqns[p+nc*i] * multiplier ;
                } while (--np);
            }
        }
    } while (--n);

    // Get the solution
    target.z = eqns[2*nc+3] / eqns[2*nc+2];
    target.y = (eqns[1*nc+3] - eqns[1*nc+2]*target.z) / eqns[1*nc+1];
    target.x = (eqns[0*nc+3] - eqns[0*nc+2]*target.z - eqns[0*nc+1]*target.y) / eqns[0*nc+0];

    if(isNaN(target.x) || isNaN(target.y) || isNaN(target.z) || target.x===Infinity || target.y===Infinity || target.z===Infinity){
        throw "Could not solve equation! Got x=["+target.toString()+"], b=["+b.toString()+"], A=["+this.toString()+"]";
    }

    return target;
};

/**
 * Get an element in the matrix by index. Index starts at 0, not 1!!!
 * @method e
 * @param {Number} row
 * @param {Number} column
 * @param {Number} value Optional. If provided, the matrix element will be set to this value.
 * @return {Number}
 */
Mat3.prototype.e = function( row , column ,value){
    if(value===undefined){
        return this.elements[column+3*row];
    } else {
        // Set value
        this.elements[column+3*row] = value;
    }
};

/**
 * Copy another matrix into this matrix object.
 * @method copy
 * @param {Mat3} source
 * @return {Mat3} this
 */
Mat3.prototype.copy = function(source){
    for(var i=0; i < source.elements.length; i++){
        this.elements[i] = source.elements[i];
    }
    return this;
};

/**
 * Returns a string representation of the matrix.
 * @method toString
 * @return string
 */
Mat3.prototype.toString = function(){
    var r = "";
    var sep = ",";
    for(var i=0; i<9; i++){
        r += this.elements[i] + sep;
    }
    return r;
};

/**
 * reverse the matrix
 * @method reverse
 * @param {Mat3} target Optional. Target matrix to save in.
 * @return {Mat3} The solution x
 */
Mat3.prototype.reverse = function(target){

    target = target || new Mat3();

    // Construct equations
    var nr = 3; // num rows
    var nc = 6; // num cols
    var eqns = [];
    for(var i=0; i<nr*nc; i++){
        eqns.push(0);
    }
    var i,j;
    for(i=0; i<3; i++){
        for(j=0; j<3; j++){
            eqns[i+nc*j] = this.elements[i+3*j];
        }
    }
    eqns[3+6*0] = 1;
    eqns[3+6*1] = 0;
    eqns[3+6*2] = 0;
    eqns[4+6*0] = 0;
    eqns[4+6*1] = 1;
    eqns[4+6*2] = 0;
    eqns[5+6*0] = 0;
    eqns[5+6*1] = 0;
    eqns[5+6*2] = 1;

    // Compute right upper triangular version of the matrix - Gauss elimination
    var n = 3, k = n, np;
    var kp = nc; // num rows
    var p;
    do {
        i = k - n;
        if (eqns[i+nc*i] === 0) {
            // the pivot is null, swap lines
            for (j = i + 1; j < k; j++) {
                if (eqns[i+nc*j] !== 0) {
                    np = kp;
                    do { // do line( i ) = line( i ) + line( k )
                        p = kp - np;
                        eqns[p+nc*i] += eqns[p+nc*j];
                    } while (--np);
                    break;
                }
            }
        }
        if (eqns[i+nc*i] !== 0) {
            for (j = i + 1; j < k; j++) {
                var multiplier = eqns[i+nc*j] / eqns[i+nc*i];
                np = kp;
                do { // do line( k ) = line( k ) - multiplier * line( i )
                    p = kp - np;
                    eqns[p+nc*j] = p <= i ? 0 : eqns[p+nc*j] - eqns[p+nc*i] * multiplier ;
                } while (--np);
            }
        }
    } while (--n);

    // eliminate the upper left triangle of the matrix
    i = 2;
    do {
        j = i-1;
        do {
            var multiplier = eqns[i+nc*j] / eqns[i+nc*i];
            np = nc;
            do {
                p = nc - np;
                eqns[p+nc*j] =  eqns[p+nc*j] - eqns[p+nc*i] * multiplier ;
            } while (--np);
        } while (j--);
    } while (--i);

    // operations on the diagonal
    i = 2;
    do {
        var multiplier = 1 / eqns[i+nc*i];
        np = nc;
        do {
            p = nc - np;
            eqns[p+nc*i] = eqns[p+nc*i] * multiplier ;
        } while (--np);
    } while (i--);

    i = 2;
    do {
        j = 2;
        do {
            p = eqns[nr+j+nc*i];
            if( isNaN( p ) || p ===Infinity ){
                throw "Could not reverse! A=["+this.toString()+"]";
            }
            target.e( i , j , p );
        } while (j--);
    } while (i--);

    return target;
};

/**
 * Set the matrix from a quaterion
 * @method setRotationFromQuaternion
 * @param {Quaternion} q
 */
Mat3.prototype.setRotationFromQuaternion = function( q ) {
    var x = q.x, y = q.y, z = q.z, w = q.w,
        x2 = x + x, y2 = y + y, z2 = z + z,
        xx = x * x2, xy = x * y2, xz = x * z2,
        yy = y * y2, yz = y * z2, zz = z * z2,
        wx = w * x2, wy = w * y2, wz = w * z2,
        e = this.elements;

    e[3*0 + 0] = 1 - ( yy + zz );
    e[3*0 + 1] = xy - wz;
    e[3*0 + 2] = xz + wy;

    e[3*1 + 0] = xy + wz;
    e[3*1 + 1] = 1 - ( xx + zz );
    e[3*1 + 2] = yz - wx;

    e[3*2 + 0] = xz - wy;
    e[3*2 + 1] = yz + wx;
    e[3*2 + 2] = 1 - ( xx + yy );

    return this;
};

/**
 * Transpose the matrix
 * @method transpose
 * @param  {Mat3} target Where to store the result.
 * @return {Mat3} The target Mat3, or a new Mat3 if target was omitted.
 */
Mat3.prototype.transpose = function( target ) {
    target = target || new Mat3();

    var Mt = target.elements,
        M = this.elements;

    for(var i=0; i!==3; i++){
        for(var j=0; j!==3; j++){
            Mt[3*i + j] = M[3*j + i];
        }
    }

    return target;
};